81 research outputs found

    Buoyancy-induced flow and heat transfer in compressor rotors

    Get PDF
    The buoyancy-induced flow and heat transfer inside the compressor rotors of gas-turbine engines affects the stresses and radial growth of the compressor disks, and it also causes a temperature rise in the axial throughflow of cooling air through the center of the disks. In turn, the radial growth of the disks affects the radial clearance between the rotating compressor blades and the surrounding stationary casing. The calculation of this clearance is extremely important, particularly in aeroengines where the increase in pressure ratios results in a decrease in the size of the blades. In this paper, a published theoretical model—based on buoyancy-induced laminar Ekman-layer flow on the rotating disks—is extended to include laminar free convection from the compressor shroud and forced convection between the bore of the disks and the axial throughflow. The predicted heat transfer from these three surfaces is then used to calculate the temperature rise of the throughflow. The predicted temperatures and Nusselt numbers are compared with measurements made in a multicavity compressor rig, and mainly good agreement is achieved for a range of Rossby, Reynolds, and Grashof numbers representative of those found in aeroengine compressors. Owing to compressibility effects in the fluid core between the disks—and as previously predicted—increasing rotational speed can result in an increase in the core temperature and a consequent decrease in the Nusselt numbers from the disks and shroud

    Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m(3) in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl(-1), average leaving site: 39±37mgl(-1)). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes.The Devon Beaver Project is led by Devon Wildlife Trust, monitored by the University of Exeter, and funded by Devon Wildlife Trust and Westland Countryside Stewards

    UWB Microwave Imaging for Inclusions Detection: Methodology for Comparing Artefact Removal Algorithms

    Get PDF
    An investigation is presented on Artefact Removal Methods for Ultra-Wideband (UWB) Microwave Imaging. Simulations have been done representing UWB signals transmitted onto a cylindrical head-mimicking phantom containing an inclusion having dielectric properties imitating an haemorrhagic stroke. The ideal image is constructed by applying a Huygens’ Principle based imaging algorithm to the difference between the electric field outside the cylinder with an inclusion and the electric field outside the same cylinder with no inclusion. Eight different artefact removal methods are then applied, with the inclusion positioned at \u1d70b and −\u1d70b/4 radians, respectively. The ideal image is then used as a reference image to compare the artefact removal methods employing a novel Image Quality Index, calculated using a weighted combination of image quality metrics. The Summed Symmetric Differential method performed very well in our simulations

    Developing Artefact Removal Algorithms to Process Data from a Microwave Imaging Device for Haemorrhagic Stroke Detection

    Get PDF
    In this paper, we present an investigation of different artefact removal methods for ultra-wideband Microwave Imaging (MWI) to evaluate and quantify current methods in a real environment through measurements using an MWI device. The MWI device measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. A simple two-layered phantom mimicking human head tissue is realised, applying a cylindrically shaped inclusion to emulate brain haemorrhage. Detection has been successfully achieved using the superimposition of five transmitter triplet positions, after applying different artefact removal methods, with the inclusion positioned at 0°, 90°, 180°, and 270°. The different artifact removal methods have been proposed for comparison to improve the stroke detection process. To provide a valid comparison between these methods, image quantification metrics are presented. An “ideal/reference” image is used to compare the artefact removal methods. Moreover, the quantification of artefact removal procedures through measurements using MWI device is performed

    Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method

    Get PDF
    Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Exploring the dynamics of flow attenuation at a beaver dam sequence

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. DATA AVAILABILITY STATEMENT: All code and data to reproduce this analysis is available from the following repository https://doi.org/10.5281/zenodo.6034308 (Graham, 2022). The code used to download and extract The Met Office NIMROD rainfall radar time series (Met Office, 2003) can be found in this repository: https://github.com/exeter-creww/Rainfall_radar.Beavers influence hydrology by constructing woody dams. Using a Before After Control Impact experimental design, we quantified the effects of a beaver dam sequence on the flow regime of a stream in SW England and consider the mechanisms that underpin flow attenuation in beaver wetlands. Rainfall-driven hydrological events were extracted between 2009 and 2020, for the impacted (n = 612) and control (n = 634) catchments, capturing events 7 years before and 3 years after beaver occupancy, at the impacted site. General additive models were used to describe average hydrograph geometry across all events. After beaver occupancy, Lag times increased by 55.9% in the impacted site and declined by 17.5% in the control catchment. Flow duration curve analysis showed a larger reduction in frequency of high flows, following beaver dam construction, with declines of Q5 exceedance levels of 33% for the impacted catchment and 15% for the control catchment. Using event total rainfall to predict peak flow, five generalized linear models were fitted to test the hypothesis that beaver dams attenuate flow, to a greater degree, with larger storm magnitude. The best performing model showed, with high confidence, that beaver dams attenuated peak flows, with increasing magnitude, up to between 0.5 and 2.5 m3 s−1 for the 94th percentile of event total rainfall; but attenuation beyond the 97th percentile cannot be confidently detected. Increasing flow attenuation, with event magnitude, is attributed to transient floodplain storage in low gradient/profile floodplain valleys that results from an increase in active area of the floodplain. These findings support the assertion that beaver dams attenuate flows. However, with long-term datasets of extreme hydrological events lacking, it is challenging to predict the effect of beaver dams during extreme events with high precision. Beaver dams will have spatially variable impacts on hydrological processes, requiring further investigation to quantify responses to dams across differing landscapes and scales.Natural Environment Research CouncilWellcome TrustDevon Wildlife TrustUniversity of Exete

    A wireless sensor network-based approach to large-scale dimensional metrology

    No full text
    In many branches of industry, dimensional measurements have become an important part of the production cycle, in order to check product compliance with specifications. This task is not trivial especially when dealing with largescale dimensional measurements: the bigger the measurement dimensions are, the harder is to achieve high accuracies. Nowadays, the problem can be handled using many metrological systems, based on different technologies (e.g. optical, mechanical, electromagnetic). Each of these systems is more or less adequate, depending upon measuring conditions, user's experience and skill, or other factors such as time, cost, accuracy and portability. This article focuses on a new possible approach to large-scale dimensional metrology based on wireless sensor networks. Advantages and drawbacks of such approach are analysed and deeply discussed. Then, the article briefly presents a recent prototype system - the Mobile Spatial Coordinate-Measuring System (MScMS-II) - which has been developed at the Industrial Metrology and Quality Laboratory of DISPEA - Politecnico di Torino. The system seems to be suitable for performing dimensional measurements of large-size objects (sizes on the order of several meters). Owing to its distributed nature, the system - based on a wireless network of optical devices - is portable, fully scalable with respect to dimensions and shapes and easily adaptable to different working environments. Preliminary results of experimental tests, aimed at evaluating system performance as well as research perspectives for further improvements, are discusse

    Positive coexistence of water voles and beaver: water vole expansion in a beaver engineered wetland

    Get PDF
    This is the final version. Available on open access from the Mammal Society via the DOI in this recordWater voles (Arvicola amphibius) are critically endangered in Great Britain and there is a pressing need for successful conservation strategies. Meanwhile, another semi-aquatic rodent, the Eurasian beaver (Castor fiber) is being restored to much of its native range including Great Britain. Beavers are known as ecosystem engineers and keystone species, creating wetland habitats. As part of the River Otter Beaver Trial in South-West England, free-living beavers were reintroduced in a location where water vole were present and being surveyed. Here, we present survey data showing the expansion of water vole into newly beaver engineered wetland areas. We propose that complex beaver wetlands may benefit water vole populations by creating new habitat and providing refuge from predation, warranting further investigation as a nature recovery option
    corecore